
振動と同期学の研究会
JSSR (Japanese Society for oscillations and Synchrology Research)

全国大会Society Meeting

一般化スペクトル理論とその応用
千葉逸人 1

1 東北大学材料科学高等研究所 〒 980-8577仙台市青葉区片平 2-1-1
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Abstract The spectral theory of linear operators is well studied as a generalization of eigenvalues of
matrices. In this article, the spectral theory is further generalized to treat a continuous and residual
spectrum, and several applications will be given.
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1. Introduction
An eigenvalue of a matrix is a fundamental tool in any area of mathematics. For example, for a linear differential

equation 𝑑𝑥/𝑑𝑡 = 𝐴𝑥, 𝑥 ∈ C𝑛 defined on a finite dimensional space, eigenvalues provide the stability of solutions.
When a given space is an infinite dimensional space H , the concept of the set of eigenvalues is extended to

the spectrum set, which consists of not only usual eigenvalues but also the continuous spectrum and residual
spectrum. Because of the continuous spectrum and residual spectrum, the analysis of a linear differential equation
𝑑𝑥/𝑑𝑡 = 𝐴𝑥, 𝑥 ∈ H becomes too difficult.

To overcome this difficulty, a generalized spectral theory based on a Gelfand triplet is developed [1]. It is
applied to

• the stability of the steady state of a linear differential equation [1].

• the analysis of the Kuramoto model, in particular the stability and bifurcation of the synchronized state [2].

• behavior of Schrödinger equations [3].

• the existence of a stable brain wave [5].

• chaotic behavior of symbolic dynamical systems [4].
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• application to the estimation of the computing performance of the reservoir computing (to appear).

• the mechanism to become diabetes (in progress).

etc... The purpose of this article is to give a brief review of the generalized spectral theory. Please refer to [1]
more precise and detailed results.

2. Gelfand triplet
Let consider the linear equation 𝑑𝑥/𝑑𝑡 = 𝑇𝑥, 𝑥 ∈ H defined on an infinite dimensional Hilbert space H . It is

known that a solution is given by the Laplace inversion formula

𝑥(𝑡) = 𝑒𝑇𝑡𝑥(0) = 1
2𝜋𝑖

∫ 𝑎+𝑖∞

𝑎−𝑖∞
𝑒𝜆𝑡 (𝜆 − 𝑇)−1𝑥(0)𝑑𝜆, (1)

for 𝑡 > 0, where the integral path is a vertical straight line such that the spectrum set of 𝑇 is included in the left half
plane Re(𝜆) < 𝑎 ; Fig. 1 (left). The operator 𝑒𝑇𝑡 is called the semigroup generated by 𝑇 . The set of singularities
of the integrand (𝜆 − 𝑇)−1 is the spectrum set. If it consists only of discrete eigenvalues of 𝑇 , we can calculate
the Laplace inversion formula by deforming the integral path and using the residue theorem as is shown in Fig. 1
(right). Hence, the real parts of eigenvalues completely determine the asymptotic behavior of solutions because
of the factor 𝑒𝜆𝑡 .

図 1: A deformation of the integral path. × denotes an eigenvalue.

Suppose that 𝑇 has a continuous spectrum on the imaginary axis. The Kuramoto model is this case. In this
case, we can not deform the path from the right to the left half plane because imaginary axis itself is the set of
singularity. Thus, it is difficult to investigate the stability of solution in the usual Hilbert space theory.

To handle the difficulty caused by the continuous spectrum on the imaginary axis, we develop the generalized
spectral theory based on a Gelfand triplet. In this section, we will illustrate how the triplet naturally arises by a
simple example.

Let us consider the multiplication operator M : 𝑓 (𝑥) ↦→ 𝑥 𝑓 (𝑥) on 𝐿2 (R). The continuous spectrum is the
whole real axis. Indeed, the resolvent is given by

(𝜆 −M)−1 𝑓 (𝑥) = 1
𝜆 − 𝑥 𝑓 (𝑥)

and it is not included in 𝐿2 (R) when 𝜆 ∈ R. Nevertheless, we will show that there exists a topological vector
space larger than 𝐿2 (R) on which the resolvent operator makes sense even if 𝜆 ∈ R.

To this end, we consider the 𝐿2 (R)-inner product with some functions 𝜙, 𝜓

((𝜆 −M)−1𝜙, 𝜓∗) =
∫

R

1
𝜆 − 𝑥 𝜙(𝑥)𝜓(𝑥)𝑑𝑥,
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where 𝜓∗ (𝑥) := 𝜓(𝑥) is introduced to avoid the complex conjugate in the right hand side. The right hand side
above is holomorphic in 𝜆 on the lower half plane {Im(𝜆) < 0}.

Next, suppose 𝜆 approaches the real axis from below

lim
Im(𝜆)→0

∫
R

1
𝜆 − 𝑥 𝜙(𝑥)𝜓(𝑥)𝑑𝑥.

The factor 1/(𝜆 − 𝑥) diverges at 𝑥 = 𝜆 ∈ R, however, it is known that as long as 𝜙 and 𝜓 are continuous functions
on R, the above integral exists as an improper integral and is continuous in 𝜆 ∈ R.

Further suppose that 𝜆 moves to the upper half plane. It is known that as long as 𝜙 and 𝜓 are holomorphic on
the region {Im(𝜆) ≥ 0}, the above function of 𝜆 has an analytic continuation to the upper half plane given by∫

R

1
𝜆 − 𝑥 𝜙(𝑥)𝜓(𝑥)𝑑𝑥 + 2𝜋𝑖𝜙(𝜆)𝜓(𝜆), Im(𝜆) > 0.

Now we have shown that if 𝜙 and 𝜓 are holomorphic on the real axis and the upper half plane, the function
((𝜆 −M)−1𝜙, 𝜓∗) of 𝜆 has an analytic continuation from the lower to the upper half plane across the continuous
spectrum on the real axis. We denote it as

𝑅(𝜆; 𝜙, 𝜓) :=


∫

R

1
𝜆 − 𝑥 𝜙(𝑥)𝜓(𝑥)𝑑𝑥, Im(𝜆) < 0∫

R

1
𝜆 − 𝑥 𝜙(𝑥)𝜓(𝑥)𝑑𝑥 + 2𝜋𝑖𝜙(𝜆)𝜓(𝜆), Im(𝜆) > 0.

Motivated by this observation, let 𝑋 be a dense subspace of 𝐿2 (R) consisting of some class of holomorphic
functions and 𝑋 ′ be its dual space, the vector space of continuous linear functionals on 𝑋 . The mapping
𝜙 ↦→ 𝑅(𝜆; 𝜙, 𝜓) defines a linear functional on 𝑋 , which is denoted by 𝑅(𝜆; •, 𝜓) ∈ 𝑋 ′. The topology on 𝑋 is
defined so that this functional is continuous. Then, the mapping 𝜓 ↦→ 𝑅(𝜆; •, 𝜓) gives a linear mapping from 𝑋

to 𝑋 ′, denoted by R𝜆, that is holomorphic in 𝜆 ∈ C. By the definition, R𝜆 = (𝜆 −M)−1 when Im(𝜆) < 0. We
call R𝜆 the generalized resolvent of M.

This discussion is summarized as follows: As an operator from 𝐿2 (R) to 𝐿2 (R), the resolvent operator
(𝜆 − M)−1 is singular on the real axis because of the continuous spectrum. Nevertheless, if we regard it as an
operator from 𝑋 into 𝑋 ′, it has an analytic continuation R𝜆 from the lower to the upper half plane. For any 𝜓 ∈ 𝑋 ,
R𝜆𝜓 is an 𝑋 ′-valued holomorphic function.

If 𝑋 is a dense subspace of 𝐿2 (R) and the embedding is continuous, 𝐿2 (R) is continuously embedded to the
dual space 𝑋 ′. In this manner, we obtain the triplet

𝑋 ⊂ 𝐿2 (R) ⊂ 𝑋 ′ (2)

called the Gelfand triplet or rigged Hilbert space.

3. Generalized spectrum
The spectrum set is also generalized as follows. Let H be a Hilbert space and 𝑇 a linear operator on H .

Recall that the spectrum set of 𝑇 is the set of singularities of the resolvent (𝜆 − 𝑇)−1. Suppose that 𝑇 has a
continuous spectrum. In a similar manner to the above, suppose that there exists a suitable subspace 𝑋 ⊂ H
such that if we regard the resolvent as an operator from 𝑋 to 𝑋 ′, then it has an analytic continuation R𝜆 across
the continuous spectrum. In general, the Riemann surface of R𝜆 is nontrivial. If the analytic continuation R𝜆

has a new singularity on the Riemann surface different from the original complex plane, we call it a generalized
spectrum. By the definition, it is not a true eigenvalue in H -sense, however, it is expected that it plays a similar
role to a usual eigenvalue and provides a new information that is not obtained from the framework of a Hilbert
space.
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Recall that the semigroup 𝑒𝑇𝑡 generated by 𝑇 is given by the Laplace inversion formula (1). Again suppose
that 𝑇 has a continuous spectrum on the imaginary axis and we cannot deform the integral path from the right to
the left half plane. Now we assume that there exists a subspace 𝑋 ⊂ H such that the resolvent (𝜆 − 𝑇)−1 has an
analytic continuation R𝜆 from the right to the left half plane as an operator from 𝑋 into 𝑋 ′. Hence, we interpret
(1) as

𝑒𝑇𝑡𝜙= lim
𝑦→∞

1
2𝜋𝑖

∫ 𝑎+𝑖𝑦

𝑎−𝑖𝑦
𝑒𝜆𝑡R𝜆𝜙 𝑑𝜆, 𝜙 ∈ 𝑋. (3)

Then, we can deform the integral path toward the left half plane (more precisely, the second sheet of the Riemann
surface), on which R𝜆𝜙 ∈ 𝑋 ′ 1. A singularity of R𝜆 on the second Riemann sheet is called the generalized
eigenvalue. By picking up the residue of the generalized eigenvalue, we can estimate the asymptotic behavior of
the semigroup.

4. Application to the Kuramoto model
It is applied to the dynamics of the Kuramoto model as follows. At first, we give a brief review of the Kuramoto

model.
The Kuramoto model is one of the most famous coupled oscillators given by

𝑑𝜃𝑖
𝑑𝑡

= 𝜔𝑖 +
𝐾

𝑁

𝑁∑
𝑗=1

sin(𝜃 𝑗 − 𝜃𝑖), 𝑖 = 1, · · · , 𝑁, (4)

which is well-known as a typical mathematical model for synchronization phenomena [6, 7]. Here, 𝜔𝑖 and 𝐾 are
constants called natural frequencies and the coupling strength, respectively. When the coupling strength is zero,
there are no interactions between oscillators and they rotate with their own velocity 𝜔𝑖 . Hence, if 𝜔 𝑗 > 𝜔𝑖 then
𝜃 𝑗 overtakes 𝜃𝑖 many times. However, if 𝐾 is positive, there are interactions between oscillators through the term
sin(𝜃 𝑗 −𝜃𝑖) and we expect that if 𝐾 is large enough, such an overtaking does not occur. Indeed, it is easy to observe
by numerics that there exists a threshold 𝐾𝑐 such that when 𝐾 > 𝐾𝑐, a synchronized state appears; a subset of
oscillators forms a cluster on a circle and it behaves like a big oscillator without overtaking. The cluster consists
of oscillators whose natural frequency 𝜔𝑖 is close to the average Ω of all natural frequencies. As 𝐾 increases, the
number of oscillators that are entrained into the cluster gets larger.

r

図 2: (left) synchronization. (right) de-synchronization.

In order to observe that whether a synchronization occurs or not, it is convenient to introduce the order
parameter defined by

𝜂 :=
1
𝑁

𝑁∑
𝑗=1
𝑒𝑖 𝜃 𝑗 (𝑡 ) . (5)

1Thus, the limit lim
𝑦→∞

in (3) is considered in weak sense (weak dual topology on 𝑋′).
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This gives the center of mass of oscillators on a unit circle. Hence, when its absolute value 𝑟 := |𝜂 | is positive
(resp. zero), a synchronization occurs (resp. does not occur). Kuramoto performed a certain formal and technical
calculation using the order parameter, and reached the following result, though there are no mathematical proofs.

The Kuramoto conjecture [6, 7].
Suppose 𝑁 → ∞ and the natural frequencies are independent and identically distributed according to a

probability density function 𝑔(𝜔). If 𝑔(𝜔) is an even and unimodal function, a bifurcation diagram of the order
parameter 𝑟 = |𝜂 | is given as Fig. 3. This means that when 𝐾 is smaller than 𝐾𝑐 := 2/(𝜋𝑔(0)), the de-synchronized
state 𝑟 = 0 is asymptotically stable. At 𝐾 = 𝐾𝑐, a bifurcation (phase transition) occurs and a stable synchronized
state (𝑟 > 0) exists for 𝐾 > 𝐾𝑐. Near the bifurcation point, 𝑟 is approximately given by 𝑟 ∼ 𝑂 (

√
𝐾 − 𝐾𝑐).

KK
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図 3: A bifurcation diagram of the order parameter.

The bifurcation point 𝐾𝑐 := 2/(𝜋𝑔(0)) is often called Kuramoto’s transition point. See [6] for Kuramoto’s
formal calculation.

The difficulty of a mathematical approach to the Kuramoto conjecture is that a certain linear operator obtained
by the linearization of the model has a continuous spectrum on the imaginary axis. Hence, we employ the
generalized spectrum theory.

(1) When 𝐾 > 𝐾𝑐, the spectrum consists of continuous spectrum and unique eigenvalue. The de-synchro state
𝑟 = 0 is unstable because the eigenvalue lies on the right half plane; Fig. 4 (left).
(2) As 𝐾 → 𝐾𝑐, the eigenvalue goes to the left side and at the bifurcation point 𝐾 = 𝐾𝑐, it is absorbed into the
continuous spectrum and disappears, in the usual Hilbert space theory.
(3) Actually, the eigenvalue does not disappear. Even if 𝐾 < 𝐾𝑐, if we apply the generalized spectrum theory,
we can show that it still exists on the second Riemann sheet as a generalized eigenvalue; Fig. 4 (right). Since
the (generalized) eigenvalue across the imaginary axis at 𝐾 = 𝐾𝑐, we can apply the bifurcation theory (center
manifold theory in generalized sense).

In this manner, the Kuramoto conjecture was proved [2].
In the following theorems, ℎ(𝜃) denotes a distribution of the initial values {𝜃 𝑗 (0)}∞𝑗=1 of oscillators.
Theorem 1.
Suppose that 𝑔(𝜔) is the Gaussian distribution. When 0 < 𝐾 < 𝐾𝑐, there exists 𝛿 > 0 such that if ℎ(𝜃) satisfies����∫ 2𝜋

0
𝑒𝑖 𝑗 𝜃 ℎ(𝜃)𝑑𝜃

���� < 𝛿, 𝑗 = 1, 2, · · · ,

then the order parameter 𝜂(𝑡) tends to zero as 𝑡 → ∞ with an exponential rate.

Theorem 2. Suppose that 𝑔(𝜔) is the Gaussian distribution. There exist numbers 𝜀0, 𝛿 > 0 such that if ℎ(𝜃)
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図 4: The motion of the (generalized) eigenvalue as 𝐾 decreases. When 𝐾 > 𝐾𝑐, it is a usual eigenvalue in
𝐿2-sense. When 0 < 𝐾 < 𝐾𝑐, it is a generalized eigenvalue that lies on the second Riemann sheet different from
the original complex plane.

satisfies ����∫ 2𝜋

0
𝑒𝑖 𝑗 𝜃 ℎ(𝜃)𝑑𝜃

���� < 𝛿, 𝑗 = 1, 2, · · · ,

then for 𝐾𝑐 < 𝐾 < 𝐾𝑐 + 𝜀0, the absolute value of the order parameter converges to the following value as 𝑡 → ∞

|𝜂(𝑡) | =
√

−16
𝜋𝐾4

𝑐𝑔′′ (0)
√
𝐾 − 𝐾𝑐 +𝑂 (𝐾 − 𝐾𝑐).

In particular, a bifurcation diagram of the order parameter is given as Fig. 3.
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